Role of Urea and Methylamines in Buoyancy of Elasmobranchs

نویسندگان

  • Withers
  • Hefter
  • Pang
چکیده

The possible role of urea and trimethylamine oxide (TMAO) in providing positive buoyancy has been examined for elasmobranch fishes. TMAO has a considerably lower density than an equimolar solution of urea, and solutions of both TMAO and urea are considerably less dense than equimolar solutions of most other body fluid solutes. The body fluid composition of three elasmobranchs, the whiskery shark Furgaleus ventralis, the black whaler shark Carcharhinus obscurus and the shovelnosed ray Aptychotremata vincentiana, is typical for marine elasmobranchs, with plasma concentrations of about 260 mmol l-1 Na+, 250 mmol l-1 Cl-, 340 mmol l-1 urea and 70 mmol l-1 trimethylamine oxide. A plasma density of 1.015 was calculated for the whaler shark (from the concentrations, relative molecular masses and absolute molal volumes of plasma solutes), which would contribute a positive lift of 8.45 g l-1. There is a large positive contribution to buoyancy by urea (3.7 g l-1), trimethylamine oxide (1.8 g l-1) and Cl- (4.0 g l-1), whereas slight negative buoyancy is conferred by Na+ (-0.8 g l-1). Divalent cations (Ca2+, Mg2+) contribute minimal negative buoyancy (about -0.1 g l-1 each) despite their rather negative partial molal volumes, because of their low concentrations. Muscle fluids contain about 40 mmol l-1 Cl-, 365 mmol l-1 urea, 160 mmol l-1 trimethylamine oxide, 16 mmol l-1 betaine and 69 mmol l-1 sarcosine. The organic solutes contribute about 12.1 g l-1 lift. Although urea and TMAO act as balancing osmolytes, and TMAO as a counteracting solute, a positive buoyancy role must be considered as a further adaptive function of urea and TMAO accumulation in chondrichthyean fishes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species.

We compared levels of the major organic osmolytes in the muscle of elasmobranchs, including the methylamines trimethylamine oxide (TMAO), betaine and sarcosine as well as the beta-amino acids taurine and beta-alanine, and the activities of enzymes of methylamine synthesis (betaine and TMAO) in species with a wide range of urea contents. Four marine, a euryhaline in freshwater (Dasyatis sabina),...

متن کامل

An increase in drinking rate of two species of marine elasmobranch fish, Scyliorhinus canicula and Triakis

in the homeostatic control of body fluid and ionic balance. In terrestrial mammals, a 1–2 % deficit in cellular fluid volume is sufficient to induce a powerful drinking response, whereas 8–10 % of extracellular fluid loss is required to induce dipsogenesis (Fitzsimons, 1998). As a consequence, an increase in plasma osmolality, or hyperosmoraemia, acts as a more acute trigger for drinking in mam...

متن کامل

Factors affecting counteraction by methylamines of urea effects on aldose reductase.

The concentration of urea in renal medullary cells is high enough to affect enzymes seriously by reducing Vmax or raising Km, yet the cells survive and function. The usual explanation is that the methylamines found in the renal medulla, namely glycerophosphocholine and betaine, have actions opposite to those of urea and thus counteract its effects. However, urea and methylamines have the simila...

متن کامل

Osmoregulation in elasmobranchs: a review for fish biologists, behaviourists and ecologists

This article provides a broad review of osmoregulation in elasmobranchs for non-specialists, focusing on recent advances. Marine and euryhaline elasmobranchs in seawater regulate urea and other body fluid solutes (trimethylamine oxide (TMAO), Naþ, Cl ) such that they remain hyper-osmotic to their environment. Salt secretions of the rectal gland and excretions in the urine compensate for continu...

متن کامل

Effects of organic solvents, methylamines, and urea on the affinity for Pi of the Ca2+-ATPase of sarcoplasmic reticulum.

The Ca2+-ATPase of sarcoplasmic reticulum can be phosphorylated by Pi, forming an acylphosphate residue at the catalytic site of the enzyme. In a previous report (de Meis, L., Alves, E., and Martins, O.B. (1980) Biochemistry 19, 4252-4261), it was shown that organic solvent such as dimethyl sulfoxide and glycerol cause a decrease in the apparent Km for Pi. In this report it is shown that a simi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 188 1  شماره 

صفحات  -

تاریخ انتشار 1994